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Abstract

It is believed that spatial structure has a significant role in the origin and preservation of genetic
diversity. The spatial organization of most populations' habitats has the potential to have significant
effects on the processes of evolution. Our goal in this work was to locate the genetic diversity of
bacterial strainsin various environments. In thisinvestigation, weisolated the bacterial strains from
each of the seven samples we took from water bodies from Khujailok and Lairok river, Moreh
Manipur India. After gramstaining, the isolated bacteria were separated into gram-positive and
gram-negative bacteria. To determine the genetic differences between the isolated bacteria, the
DNA was extracted and amplified using PCR. The results showed that salinity was the most
important environmental factor in explaining variance in microbial communities, surpassing TN,
temperature, TP, or pH. These findings suggested that the genetic diversity and functionality of the
water micro biota are influenced by environmental variables. Salinity, not TP, temperature, pH, or
TN, was the most crucial environmental component.
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Introduction

Many naturally occurring populations, like the many communities of microorganisms that create
biofilms or the bacteria traversing the varied, viscous environment of the human lung, exist in
complicated, spatially organized habitats (Flemming et al., 2016; Faure et al., 2018). Individual
mobility restrictions make it more difficult or perhaps impossible for a population to mix over its
whole geographical range. A collection of more or less autonomous subpopulations may be created
at the extreme as a consequence of this mobility restriction, which drives population structure and
subdivision. In these conditions, significant interactions like competition or predation tend to be
local rather than global processes, occurring primarily between individuals within a constrained
geographical area or "local neighborhood" (Habets etal., 2006). Therefore, apopulation's ecological
dynamics as well as, overtime, its evolutionary dynamics, may be significantly influenced by the
spatial organization (France et al., 2019).

Here, however, we concentrate on the inherent effects of spatial structure, investigating those
effects that arise only as a result of mobility restrictions in an otherwise uniform external
environment. Populations expanding and changing in complex natural ecosystems may also take
on a structured appearance as a result of externally imposed environmental variation (e.g.
resources, temperature, etc.).

One of the processes that contributetothe preservation of genetic diversity in populations and one
of the key drivers of a species' genetic structure is gene flow. Mushroom-forming basidiomycete
fungi exhibit geographic variation in population structure, as would be anticipated for a collection
of organisms that includes species with various life histories and dispersion syndromes, according
to a growing body of research (Amend et al., 2010). One of the main areas of study in evolutionary
biology is the spatial organization of genetic diversity among wild populations.
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Population density, breeding pattern, and environmental variability are the main determinants of structure. The
capacity of plantsto preserve genetic diversity within populations and broaden their global rangerelies onthe gene
flow mediated by seed and pollen dispersion (Peakall et al., 2003). Spatial genetic structure (5GS), also known as
the structuring of genetic variation within and across populations, is influenced by several factors (Vekemans et al.,
2004). Population genetic structure is significantly influenced by the geographical distribution of people within a
population, which is influenced by dispersion mechanisms (Pometti et al., 2018).

Previous research has shown how spatial structure's provision of environmental variability causes populations to
adapt and spread. Raeymaekers et al. (2017) discovered patterns of shared and unique genomic divergence across
two related species of sticklebacks. To demonstrate how between-site environmental heterogeneity affects
phenotypic parallel divergence, Stuart et al (2017) employed replicated pairs of lake-stream stickleback
populations. The quantity of gene flow across locations accounted for a major portion of the deviation's size,
although the genetic diversity throughout the genome in response to environmental change was not assessed. In
responseto a similar environmental setting, Inthe current work, welook at the effects of population fragmentation
and niche creation in addition to how environmental variability affects adaptive radiation.

Materials and methodology

Sample collection

Seven water samples were taken in August 2022 from seven different neighboring water bodies from Khujailok and
Lairok river, Moreh Manipur India. Each sample included soomL of water that was extracted in sterile bottles from
a depth of 1 meter belowthe surface. After that, the samples were putonice before being pumpedthroughao.22m
polyethersulfone membrane filter (Hou et al., 2016). All water samples had their temperature, pH, DO, and salinity
tested. Using an automated discrete analyzer, the concentration so froth phosphate (PO43--P), TN, TP, and
dissolved inorganic nitrogen (NO* -N, NH4*-N, and NO3-N) were determined.

Bacterial Strain isolation

Individual strains were directly so lated in a lab culture at 50°C from the collected materials, as stated by Miller et
al. (2006). Under 75 m mol of photon sm?s™of cool-white, fluorescent light with a12-h (light-dark) cycle, strains
were maintained in 25ml of D medium at 5o°C.Gram staining was used on the isolated isolates to determine the
species of bacteria present.

DNA isolation, Polymerase Chain Reaction, and sequencing

Accordingto the manufacturer'srecommendations, DNA was extracted from each sample usinga Water DNA Kit.
Usinga Nano Vue Plus Spectrophotometer, the content and purity of genomic DNA were assessed (GE Healthcare,
USA). PCR Master Mix was used to conduct the PCR reactions, and the Polymerase Chain Reaction products were
pooled at equimolar quantities. Utilizing an lllumina TruSeq DNA PCR-Free Sample Preparation Kit, the sequencing
libraries were created, and index codes were added.

Statistical analysis

To ascertain the significance of diversity indexes and site characteristics, a Mantel test and multiple linear
regression using the stepwise approach were carried out, and analyses were carried out using SPSS version 26.0.
(SPSS, Inc.). Canonical correspondence analyses (CCA) were carried out to investigate the link between
environmental conditions and microbial diversity (Dan et al., 2010).

Results

Salinity ranged from 0.42t032.71 percent and DO ranged from 3.45t0 19.04 mg/L inthe 22 ponds' water samples,
which were used to classify the samples. The pH varied from 7.31 to 9.81, while the water's temperature was
between 27.70and 32.40 C. The concentrations of NH*4-N, NO2-N,NO3-N, and PO43-P, respectively, ranged from
0.01-3.24 mgL-1t00.01-0.37mgL-1t00.01-2.08mgL-1.Additionally, significant variationsin TN (0.35-5.26mgL-and
TP were found (0.01-1.32mg L-1).

Structure and Diversity in Microbial Communities

16 rRNA gene amplicons from 66 samples were sequenced using HiSeq, yielding 3,367,470 quality sequences on
average (43,116-59,029) per sample. Gene fragments totalling 2,450,746 were chosen for categorization, and the
pieces were then groupedinto 9,988 prokaryotic operational taxonomic units. Every sample has between 659 and
1,835 OTUs found in it. Since the OTUs in each library, the diversity indices shown below were calculated. The
Chaoascorevaried from 702 to 2,593, the Shannonindexranged froms3.48t0 7.94, and the excellent coverage index
ranged from 0.95 to 0.970. Classifiable sequences were divided into 58 different groups. Proteobacteria,
Bacteroidetes, Cyanobacteria, Planctomycetes, Verrucomicrobia, Firmicutes, Chlorobi, Chloroflexi, Actinobacteria,
and Chlamydiae were the most numerous and diverse groups, makingup32.12,20.58,12.61,10.61,8.35,5.99, 2.81,
2.44,1.94, and 0.73% of the total microbiological (Fig. 1). Even though they were less prevalent, representatives of
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the phyla were present in all samples. These include the Gemmatimonadetes (0.1 %), Acidobacteria (0.33%),
Fusobacteria (0.13%), Tenericutes (0.15%), and Spirochaetes (0.03%) phyla. The most common phylotypes were
Synechococcus (8.76%), Flavobacterium (6.05%), Pseudomonas (1.73%), Paenisporosarcina (1.25%), Rheinheimera
(1.25%), Janthinobacterium (1.25%), Luteolibacter(1.25%), Shewanella(1.25%), Mycoplana (0.93%), and Rhodobacter

(0.93%).
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Fig. 1. Based on data from 16S rRNA gene amplicon sequencing, the relative abundance (%) of dominating phyla
from all samples

Salinity as a predictor

The results of the unweighted pair group method with arithmetic mean analysis revealed that the samples were
split intotwo groups. Group, | had three samples, whereas Group Il contained four samples. Groups Il and | related
to samples with low and high salinities, respectively, and were primarily connected with salinity rather than sites or
locations. The findings indicated that salinity may play a significant role in influencing the divergence of water
microbial communities in such confined aquaculture settings.

Temperature as a predictor

To understandthe significance of environmental parameters and geographical isolation of the variety of microbial
communitiesin shrimp cultural enclosure habitats, ABT model- based analyses were performed. According to the
findings, the temperatureis the most important element, with a proportional effect on phylogenetic diversity and
phylotypes of around 30%. The phylogenetic diversity and phylotypes of water microbial communities in shrimp
cultural enclosure environments, as indicated by gradients of latitude and longitude, were not significantly
influenced by geographic distance.
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Fig. 2. Phylogenetic diversity (A) and phylotypes are affected to varying degrees by environmental factors and
geographical distance (indicated by latitudinal and longitudinal).
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Discussion

The primary objectives of this research were to analyze water microbial community structures and discover
environmental elements that influence their composition and behavior in shrimp production enclosure
environments. The function and structure of H20 microbial communities were shown to be significantly affected
by salinity in shrimp culture enclosures. Temperature, pH, TP, and TN were other environmental factors that
impacted the microbial populations in water. These results provide substantial support for our hypotheses.
According to our first hypothesis, the key environmental elements affecting the makeup of the water microbial
community may be temperature or salt. High-throughput sequencing's ability to evaluate many samples and
provide in-depth sequencing has improved our understanding of the overarching tendencies in the microbial
community structures of the water in shrimp-cultivation enclosures. All these factors together led to a large
quantity of information gained from sequencing the 16S rRNA genes of microorganisms in pond water used in
aquaculture. The microbial community variety withinthe samples was greater than that seen in earlier research on
water microbial communities in various environments, such as tilapia ponds and estuary reservoirs (Dabadé et al.,
2016).

The varied geographies and techniques used may be the cause of the variation in OTU counts in the water so
confined aquaculture habitats. Accordingto earlier studies on tilapia ponds, Chinese grasscarp ponds, and shrimp
ponds, which showed an average percentage of more than 30%, Proteobacteria was the most prevalent phylumiin
our research. Cyanobacteria, Actinobacteria, Bacteroidetes, and Planctomycetes accounted for the remaining four
most common phyla.Inshrimp cultural enclosure environments, Bacteroidetes, Planctomycetes,and Actinobacteria
were consistently shown to be the dominating taxa; nevertheless, thedistribution patterns of several phyla were
different from those previously seen. For instance, our findings contradicted those of shrimp ponds, which
suggested that Cyanobacteria was a prominent phylum (Biebl et al., 2005).

Furthermore, where as Chlorobi's relative abundance was low in prior studies, it was high in the current research,
making it a dominating phylum. In addition, we found an oxygenic phototrophic microorganisms like
Dinoroseobacter that use light for energy. This part of the organism lacks the necessary bacterio chlorophyll and
photosynthetic reaction centers to fix CO,, making it distinct from photosynthetic bacteria.Energy may also be
produced through the oxidation of inorganicmolecules by bacteria like Rubrivivax and Hydrogenophaga, which use
carbon monoxide oxidation and thiosulfate reduction, respectively. Additionally, this research found many
microorganisms related to the nitrogen cycle. Primary N,-fixing Cyanobacteria, including Cylindrospermopsis, are
controlled by nitrogen. Ammonia-oxidizing bacteria, such as Nitrosococcus and Nitrosopumilus, are those that
convert ammonia to nitrite. The function of nitrate reduction is linked to Glaciecola, Paenisporosarcing,
Rheinheimera, Marivita, Massilia, and Flavobacterium (Sunagawa et al, 2015).

Some microorganisms, like Hydrogenophaga, do both nitrification and denitrification simultaneously, acting as
denitrifying bacteria in the traditional anaerobic denitrification process. Additionally, certain infections such as
Pseudomonas, Vibrio, and Flavobacterium were found in our investigation and may be connected to theillnesses of
cultured animals. Additionally, we discovered that several functional groups had considerably different abundances
in environments with high and low salinity. High salinity water had an over representation of Synechococcus
compared to low salinity water, whereas Rhodobacter and Flavobacterium had decreased relative abundances.
These findings showed that microorganisms are important players in shrimp cultural enclosure habitats'
production, nutrient cycling, and water quality. Temperature and salinity are two important environmental
parameters that affect how microbial communities are organized in various habitats. But according to earlier
research, salinity, not temperature, significantly contributed to the explanation of the distribution patterns of the
world's microbial communities. Accordingtoour study's results, salinity acted as a more important environmental
factor than temperature in influencing the divergence of H,O microbial communities in ecosystems of shrimp
cultural enclosures (Auguet et al., 2010).

Conclusion

The goal of this research is to investigate the dynamics of aquatic microbial communities in shrimp culture
enclosure habitats. The salinity was the most important environmental component in explaining variance in
microbial communities against temperature, Turgor Pressure, total nitrogen or pH. The salinity had a significant
role in the water microbial community's ability to operate. The findings provide a place to start when predicting
how microbial communities may behave in shrimp cultural enclosure habitats in response to environmental
changes.
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