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Abstract 
Soil is the accommodation for many microorganisms that play various functions in soil ecosystems, 
including organic matter decomposition, respiration, nutrient cycling, energy generation, growth 
and development and many more. Development and functioning of microbial communities are 
governed by the consumption of key nutrients that are available due to the result of nutrient cycles. 
These cycles play a crucial role in plant-soil metabolism via photosynthesis, enzyme production, 
energy conversion, soil respiration (SR), community growth and functioning. SR releases energy in 
terms of carbon efflux that is consumed at different levels in ecosystem functioning through various 
organisms and directly involved in the global carbon cycle. Seasonal shifts in different 
environmental factors such as soil temperature, soil moisture, physicochemical properties, enzyme 
activity and land use conversion create alterations in soil microbial activity and SR that 
consequently affect soil fertility and health. Therefore, the evaluation of SR provides useful insight 
into the soil status and productivity. 
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Introduction 
Soil is a basic component of the natural ecosystem, constituted by different layers where the top 
layer governs different metabolic activities of flora and fauna, residents of a variety of microbes, 
and their activity is involved in the degradation of soil organic matter (SOM) and the generation of 
energy by converting nutrients and trace elements that are required to effectively drive the 
biogeochemical cycles (Chen et al., 2018). Soil ecosystems have the highest carbon (C) flux due to 
the respiration of microbial activity that is responsible for the 98 Pg C emission per year in 
atmospheric environments (Yazdanpanah et al., 2016), creating crucial input of C in the terrestrial 
C cycle globally (Zhao et al., 2017). Soil CO₂ efflux is greatly influenced by a number of biotic and 
abiotic factors, such as soil temperature (ST), soil moisture (SM) (Jiang et al., 2020), availability of C 
substrate, soil microbial activity (SMA) (Bargali et al., 2018), global climate change, precipitation 
patterns, and human activity (land use conversion, farming, and deforestation), particularly in arid 
and semi-arid regions (Ahlstrom et al., 2015; Arredondo et al., 2017; Meena et al., 2020). The 
understanding of the mechanics of SR offers important insights for improving soil management 
techniques, encouraging sustainable agriculture, and guaranteeing the long-term health of 
ecosystems. This study's goal is to offer practical knowledge on SR and the many elements that 
affect its rate in order to achieve the highest possible level of soil fertility and quality. 
 
Components of soil respiration 
Soil respiration (SR) is a crucial phenomenon that involves two primary ingredients: the autotrophic 
respiration (RA), generated by below-ground components that have plant roots, and the 
rhizospheric portion, whereas the heterotrophic respiration (RH) is generated by soil 
microorganisms involved in the decomposition of SOM is account for the major portion (54%) in 
total respiration in forest ecosystems (Ryan and Law, 2005; Vargas et al., 2011). RA is greatly 
affected by ST and nitrogen content in plant tissues. Conversely, the ST, SM, respiratory enzyme 
activity, and substrate availability affect the RH rate. This establishes the interconnectedness of soil 
health, microbial activity, and nutrient cycling. SR is closely associated with byproducts of plant 
activity, litter decomposition and rhizosphere root activity (Fig. 1).  
 
The production of CO₂ from these substrates is categorized into two vital types: basal respiration 
(BR) and substrate-induced respiration (SIR). SBR, which reflects the rate of respiration resulting 
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from the mineralization of organic matter (OM), is commonly considered a crucial indication of soil 
quality (Creamer et al., 2013). This makes it an essential metric for evaluating soil health and 
productivity. Moreover, the availability of substrates not only elevates the respiration rate (SIR) but 
also reveals insights about population diversity and their function that are essential to the dynamics 
of ecosystems.  
 

 
Figure 1. Components of soil respiration and its dynamics (1Autotrophic respiration 
(Yazdanpanah et al., 2016); 2Heterotrophic respiration (Liu et al., 2016); 3Dissolution of CO2 (Lima 
et al., 2023); 4Other sources of CO2 production (Global Carbon Budget, 2023); 5C cycle (Black et al., 
2017); and 6Atmospheric CO2 (Global Carbon Budget, 2023). 
 
Variation in soil respiration  
The contribution of SR to the release of CO₂ between the atmosphere and the terrestrial 
environment is substantial. Consequently, changes in SR have a significant impact on the C cycle. 
Many variables contribute to variations in SR, which may be seen as variations in the rate of CO₂ 
emissions from soil to the atmosphere. SR fluctuates both spatially and temporally (Kosugi et al., 
2007; Tomar and Baishya, 2020; Yu et al., 2021). Seasonal variations in SR have been reported in a 
number of international studies (Xue and Tang, 2017; Tian et al., 2019; Meena et al., 2020). 
 
Factors affecting soil respiration 
The irregular precipitation and extreme weather conditions create stress on soil microbiota, ST and 
SM, resulting in seasonal variation in SR (Xu et al., 2018; Tomar and Baishya, 2020), whereas land 
use patterns (Tomar and Baishya, 2020); bulk density (Dore et al., 2014); soil management activities, 
SC content, root biomass, microbial biomass (Jiang et al., 2020); and cultivation approaches create 
variation in SR spatially (Meena et al., 2020) (Fig. 2). Some factors that shaped these variations are 
the following:  
 
Soil temperature: Extreme weather, vegetation, deforestation, landscape placements, and human 
activity are the causes of ST shifting (Licht and Al-Kaisi, 2005). These changes also affect the 
composition of the microbial community that determines the responsiveness of SR to temperature 
changes, also dependent on SM conditions. According to Meyer et al. (2018), agriculture is less 
responsive to ST than forest soil. Prior research has employed several models, such as logistics 
(Schlentner and Van Cleve, 1985) and linear and quadratic correlations (Holthausen and Caldwell, 
1980), to offer important insights into the link between ST and SR.  
 
Soil moisture: According to Zhang et al. (2013) and Lima et al. (2023), SM is in charge of the 
diffusion of CO₂ and soluble substrate by creating porous soil and controlling rhizospheric microbial 
activity, which in turn affects soil CO₂ levels. Due to the inhibition of microbial functioning, low SM 
levels can impede SR (Yuste et al., 2007), whereas in another study by Lai et al. (2013), reported an 
increase in SM increased the SR. Although too much SM might cause waterlogging, decrease soil 
porosity, and limit the amount of CO₂ that is released (Davidson et al., 2000). 
 
Precipitation: Precipitation affects the SR rate in addition to ST and SM (Bolat et al., 2015). 
According to statistics, precipitation has decreased in frequency and increased in intensity in recent 
decades. Rainfall events have an impact on soil when it is already at its ideal moisture level, and 
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plant microbial activity influences SC emissions. Understanding the mechanism of rainfall events on 
soil C efflux aids in the prediction of SC dynamics, as the influence of precipitation on SR estimates 
in terrestrial ecosystems is ambiguous (Guan et al., 2023; Han et al., 2024). 
 

 
Figure 2. Factors responsible for variation in soil respiration 

 
Soil physicochemical activity: SR has been identified as one of the major soil health indicators. Soil 
pH and cation exchange capacity (CEC), bulk density, and C:N ratio affect the SR (Pinto et al., 2018; 
Bao et al., 2019).  However, Jong et al. (1974) reported decreased respiration due to mineral nitrogen 
addition, whereas it increased with MWD, EC, pH, K and P but decreased with silt content. 
 
 SOM composition: The microbial composition (Vargas et al., 2011), photosynthetic metabolism 
(Zhang et al., 2013), and the use of organic amendments like manure and compost (Guan et al., 
2023) all have an impact on soil productivity, which influence SR rates. According to Matyas et al. 
(2018), applying additional OM to the field under an organic farming method increased SR in both 
organic and conventional soils.  
 
Climate variation: Climate change significantly impacts SR, a critical process in the C cycle, by 
altering temperature and precipitation patterns. These modifications impact microbial activity and 
SOM dynamics, which in turn impact the rate at which CO₂ is emitted from soils. Factors including 
ST, SM, and plant traits affected seasonal changes in SR, underscoring the intricate relationship 
between climate change and SR in semi-arid areas (Wang et al., 2023; Li et al., 2023). 
 
Vegetation: Vegetation influences SR by changing the microclimate of the soil, the amount and 
quality of litter, and the respiration rates of the roots. According to Raich and Tufekcioglu (2000), 
coniferous forests have lower respiration rates than broad-leaved forests, but grasslands might 
have greater respiration rates than forests. The significance of vegetation in soil health and 
respiration dynamics is highlighted by another study that found that grasslands had higher rates 
than non-native pine plantations (Joshi et al., 2024). This suggests that vegetation type can have a 
significant impact on SR under certain conditions (Vargas et al., 2008). 
 
Litter input: The amount and community structure of soil microorganisms are impacted by litter 
input, which in turn impacts the SR (Wu et al., 2017). On the other hand, the process by which litter 
inputs affect SR is quite intricate. Most research has indicated that litter inputs considerably 
enhanced SR (Zimmermann et al., 2009; Pinto et al., 2018), whereas a small number have observed 
a decrease in SR (Fekete et al., 2014). 
 
Soil microbes: Semi-natural environments such as forests and grasslands have higher populations 
of soil microbes. Important factors influencing microbial diversity include crop management 
techniques (Romdhane et al., 2022), soil depth (Piotrowska-Długosz et al., 2022), and land-use 
conversion. They have a seasonal effect on microbial diversity, Soil Microbial Biomass Carbon 
(SMBC), enzyme activities, and SR, with increases in the monsoon season and lows in the winter in 
semi-arid countries like India, where variations in precipitation subsequently lead to changes in ST 
and SM (Bolat et al., 2015; Tomar and Baishya, 2020) that also impact SMA and SR.  
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Enzyme activity: Enzymes are involved in the breakdown of OM, may be utilized as a gauge of 
microbial activity (Boerner et al., 2005). Its effects vary depending on the substrate's availability, 
microbial diversity, and temperature. Enzymes have been shown to correlate with SR in earlier 
research. These include β-glucosidase (Daunoras et al., 2024), alkaline phosphatase activity (Zhao 
et al., 2018), catalase, saccharase, urease, dehydrogenase, and phenol oxidase (Tomar and Baishya, 
2020). 
 
Table 1. Soil respiration and major influencing factors in different land use in various Indian 
literature  

SM- soil moisture, MBC- microbial biomass carbon, ST- soil temperature, SR- soil respiration, AT- air 
temperature, SC- soil carbon 

 

Soil carbon: SC has a significant impact on SR, an essential process in the global C cycle. SC serves 

as a substrate for microorganisms and plant roots, which metabolize them and exhale CO₂. As SC 

increases, respiration rates rise, which can affect atmospheric CO₂ levels and the global C cycle. Root 

and rhizospheric activity, SOM composition, and SMBC all affect the SR rate and SC content 

(Kotroczo et al., 2023; Ghorbani et al., 2023). 

 

S. 
No 

Major 
influencin
g factor 

Land use pattern Duration of 
study 

Results Seasonal pattern Study area References 

1.  SC, SM, 
MBC  

Moist sandy flat 
(MSF), uncultivated 
sandy land (USL) 
and cultivated 
sandy land (CSL) 
along the river 
Ganga across the 
Varanasi stretch. 

December–
January (peak 
of winter) 
2014–15 

CSL > USL > MSF The dry season has 
the greatest CO₂ 
efflux. 

Varanasi, 
Uttar 
Pradesh 

Singh et al., 
2017 

2.  ST Pichavaram 
mangrove forest  

February 
2016 to 
October 2016 

Surface soil 
CO₂ 
concentration 
ranged from 
375 to 532 
ppm. 

CO₂ efflux was 
highest during the 
pre-monsoon, 
whereas it was low 
during the 
monsoon. 

Southeast 
coast of 
India 

Gnanamoor
thy et al., 
2019 

3.  ST, SM 
and 
evaporatio
n of soil 

Natural evergreen 
forest of Kempt 
watershed, 
Mussoorie with 3 
different elevation 
points (1700, 1800 
and 1900m) 

  Maximum 1800 m 
altitude. 

SR is maximum in 
the rainy season 
and lowest in 
winter. 

Himalayan 
moist 
temperate 
forests 

Kumar et 
al., 2020 

4.  ST and SM Different ridges of 
Delhi 

Pre-
monsoon, 
post-
monsoon and 
winter 

  SR was highest in 
monsoon and 
lowest in winter. 

NCT of 
Delhi 

Tomar and 
Baishya 
(2020) 

5.  SM MFC (mixed forest 
cover), AF 
(agriculture field), 
VF (vegetable field), 
PFC (Prosopis 
juliflora (Sw.) DC-
dominated forest 
cover)  

Monthly MFC > PFC > AF > 
VF 

SR was highest in 
the monsoon and 
lowest in summer 
(PFC, MFC, and 
AF); in VF, it was 
high in summer 
and low in winter. 

Semi-arid 
area of 
Delhi 

Meena et 
al., 2020 

6.  ST, SM, 
biotic and 
abiotic 
factors 

Chajing Lakpa, 
Chaning Lairembi, 
Kalika Lairembi, 
Ibudhou 
Loiyalakpa, Panam 
Ningthou and 
Nongpok Ningthou. 

Monthly for 2 
(April 2012-
March 2014) 

The maximum SR 
in Panam Ningthou 
is 950.97±41.15; ST 
is the most 
influencing factor 
for SR. 

SR was maximum 
in different months 
of the rainy season 
in most of the 
study areas and 
decreased in 
winter. 

Manipur Sanjita et 
al., 2022 

7.  Kinds of 
forest, 
season 

Chir pine (CP), Banj 
oak (BO), and banj 
oak regenerated 
(BOR) forest 

  The SR was higher 
in BO and BOR 
than that of the CP 
forest in the rainy 
season. 

CO₂ efflux was 
significantly higher 
during the 
precipitation than 
in winter and 
summer. 

Kumaun hill 
region, 
central 
Himalayan 
Forest  

Kumar et 
al., 2023 

8.  ST, AT and 
altitude. 

Temperate Forests 
of the Western 
Himalayan region 

  SR varied under 
different subtypes 
and species types 
of the Himalayan 
temperate forests. 

The SR was the 
maximum among 
the major tree 
species of the 
Western Mixed 
Coniferous Forest. 

Uttarakhan
d and 
Himachal 
Pradesh 

Pandey et 
al., 2023 

9.  ST and SM Dry deciduous teak 
forest (DDTF), dry 
deciduous mixed 
forest (DDMF) and 
Boswellia forest 

  July has the 
highest SR among 
all the forest sites. 
January minimum 
DDMF has the 
highest SR. 

SR was high in the 
monsoon and 
summer and lowest 
in winter. 

Sagar, 
Madhya 
Pradesh, 
Vindhyan 
range 

Dar et al., 
2023 



Environmental Science Archives   (2025) Vol. IV Issue 2                    DOI: 10.5281/zenodo.16308690 

 

 498 

www.envsciarch.com 

Soil management activities: Soil management significantly influences SR by altering microbial 

activity and C pools. Effective management practices can enhance respiration rates, while poor 

practices may block them, ultimately affecting the SC cycle and its response to climatic changes. 

When compared to forest soils, agricultural methods including tillage, varying plant density, and 

row spacing raise CO₂ emissions, underscoring the effect of land use on SR rates and C dynamics 

(Vasquez et al., 2013; Lewczuk et al., 2023). 

 

Fertilizer application: Generally, fertilization would affect SR and its components via altering the 

soil physicochemical and biological factors, while the effects of fertilization on SR components 

largely depended on the fertilizer type and dose, plant species, soil quality, and local environmental 

conditions (Yang et al., 2017; Zhang et al., 2021). Long-term fertilization in semi-arid areas has 

changed the structure of bacterial communities and the amounts of SC and SN, which has led to an 

increase in CO₂ emissions (Wang et al., 2022). 

 

Land use conversion: SR varies significantly with changes in land use (Xue and Tang, 2017). Several 

factors are responsible for this variation, including soil microclimate condition (Liu et al., 2016), land 

use conversion duration (Wang et al., 2015), and biotic and abiotic factors (Zhang et al., 2015). 

Changes in land use also affect soil C flow, which is thought to be the second-largest contributor of 

CO₂ emissions caused by human activity and accounts for almost 25% of worldwide CO₂ emissions. 

For example, between 1850 and 1990, changes in land usage resulted in an emission of around 123 

Pg C into the ambient air (IPCC, 1990). These land-use changes impact positively as well as 

negatively on SR, as some studies reported increases in SR (Zhang et al., 2015), while others disclose 

a drop-in SR rate (Liu et al., 2016; Xue and Tang, 2017). However, changes from one land use to 

another, such as cropland to orchards, grasslands, and woodlands, lead to vegetation restoration, 

enhance SC and root biomass, and also affect the SR (Zhang et al., 2015). Higher SR ratios are seen 

in forest land use because of microbial biomass and certain soil characteristics high in natural 

ecosystems (Kumar et al., 2023). Forests in India's semi-arid regions promote more soil nutrient 

cycling and microbial activity than cultivated areas, which suffer from lower SC, N, and BR as a result 

of intensive land-use management techniques (Meena and Rao, 2021). Accordingly, topography 

and landscape have an impact on any land use modifications, and these elements also affect the 

spatial distribution of SR (Tian et al., 2019). Table 1 represents the soil respiration and major 

influencing factors in different land uses in the Indian context. 

 

Conclusion 

Continuing to investigate the complex relationships between soil respiration (SR) and the factors 

that influence it is essential for enhancing our understanding and management of soil health and 

ecosystem sustainability. This is particularly vital in semi-arid ecosystems, where unpredictable 

precipitation patterns significantly impact carbon (C) flux. Thus, conducting annual SR 

measurements in these regions is not just beneficial; it is crucial. Soil SR serves as a powerful 

indicator of soil health and productivity within terrestrial ecosystems. Its direct influence on 

atmospheric CO2 levels highlights its pivotal role in the global carbon cycle and storage. The 

variability of SR is profound, fluctuating significantly throughout the seasons and across diverse 

landscapes. This fluctuation is shaped by several critical factors, including soil temperature, soil 

moisture, vegetation composition, climate variability, topographical features, and land use 

changes. Furthermore, key environmental and soil characteristics—such as precipitation patterns, 

water availability, soil organic matter, soil pH, and cation exchange capacity play influential roles in 

determining SR. This comprehensive literature review provides a deep understanding of SR and the 

factors that influence it. It emphasizes the strong connections between the metabolic and microbial 

activities of both soil and plants, which vary seasonally and spatially, resulting in changes to soil 

fertility and productivity. Such studies are essential for developing effective strategies for 

sustainable land and soil management practices, promoting healthier and more productive soils, 

and balancing carbon efflux between the atmosphere and terrestrial ecosystems. 
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