top of page
Windows 7 ultimate collection of wallpapers (60).jpg

Nematophagous Fungi as an Extraordinary Tool to Control Parasitic Nematodes: A Review

Elkhateeb WA, EL-Ghwas DE and Daba GM

16 Jan 2023

DOI: 10.5281/zenodo.7540410


​Due to the harmful impacts of using chemicals in controlling plant pests as nematodes, there is a current trend of employing natural pesticides that show potency together without contaminating the environment or negatively affect human and other creatures. Hence, the name of nematophagous fungi has risen as potent biocontrol tools that attack nematodes specifically without harming surrounding ecosystem. Different nematophagous fungal species act as natural predators of nematodes and soil-dwelling worms. Hence, we aimed in this review to discuss importance of nematophagous fungi, their occurrence, taxonomy and evolution. Also, describing examples of using nematophagous fungi as biological control agents. Moreover, the future of employing nematophagous fungi in general and mushrooms in particular in this field is highlighted.


Chemistry of Natural and Microbial Products Department, Pharmaceuticals Industries Institute, National Research Centre, Dokki, Giza, Egypt 12622
Correspondence and requests for materials should be addressed to WAE



Elkhateeb WA, EL-Ghwas DE and Daba GM (2023) Nematophagous Fungi as an Extraordinary Tool to Control Parasitic Nematodes: A Review. Environ Sci Arch 2(1):52-58. DOI: 10.5281/zenodo.7540410


1. Ahman J, Olsson M, Johansson T, et al. (2002). Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of subtilisin with nematotoxic activity. Applied and Environmental Microbiology, 68: 3408–3415.
2. Ahren D, Faedo M, Rajashekar B and Tunlid A. (2004). Low genetic diversity among isolates of the nematode-trapping fungus Duddingtonia flagrans – evidence for a recent worldwide dispersion from a single common ancestor. Mycological Research, 108: 1205–1214.
3. Barron GL, Dierkes Y. (1977). Nematophagous fungi: Hohenbuehelia, the perfect state of Nematoctonus. Canadian Journal of Botany, 55(24), pp.3054-3062.
4. Bourne JM, Kerry BR, De Leij FAAM (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6: 539–548.
5. Braga FR, de Arau´jo JV. (2014). Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Appl Microbiol Biotechnol., 98: 71–82.
6. Chen Y, Gao Y, Zhang KQ, Zou CG. (2013). Autophagy is required for trap formation in the nematode‐trapping fungus A rthrobotrys oligospora. Environmental microbiology reports, 5(4): 511-517.
7. Elkhateeb WA, Daba, GM, Soliman GM. (2021). The anti-nemic potential of mushroom against plant-parasitic nematodes. J Microbiol Biotechnol, 6(1): 1-10.‏
8. Flint ML, Dreistadt SH. (1998). In: Clark JK (ed) Natural enemies handbook: the illustrated guide to biological pest control. University of California Press, Davis.
9. Hsueh YP, Mahanti P, Schroeder F, Sternberg P. (2013). Nematode-trapping fungi eavesdrop on nematode pheromones. Current Biology, 23(1): 83-86.
10. Huffaker CB Messenger PS DeBach J. (1971). The natural enemy component in natural control and the theory of biological control. Proceedings on AAAS Symposium on Biological control, Boston, Massachusetts, 16-67.
11. Jackson M. (2013). New Technology for harvesting the power of beneficial fungi Agricultural Re-search Magazine, 61(1): 21.
12. Jansson H, Jeyaprakash A, Zuckerman BM. (1985). Differential adhesion and infection of nematodes by the endoparasitic fungus Meria coniospora (Deuteromycetes). Applied and Environmental Microbiology, 49(3): 552-555.
13. Kerry BR. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant parasitic nematodes. Ann Rev Phytopathol., 38: 423–441.
14. Larriba E, Jaime M, Carbonell-Caballero J, Conesa A, Dopazo J, Nislow C, Martín-Nieto J, Lopez-Llorca L. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65: 69-80.
15. Lebrigand K, He L, Thakur N, Arguel M, Polanowska J, Henrissat B, Record E, Magdelenat G, Barbe V, Raffaele S, Barbry P. (2016). Comparative genomic analysis of Drechmeria coniospora reveals core and specific genetic requirements for fungal endoparasitism of nematodes. PLoS genetics, 12(5): p.e1006017.
16. Lee CH, Chang HW, Yang C, Wali N, Shie J, Hsueh Y. (2020). Sensory cilia as the Achilles heel of nematodes when attacked by carnivorous mushrooms. Proceedings of the National Academy of Sciences, 117(11): 6014-6022.
17. Li J, Yu L, Yang J, Dong L, Tian B, Yu Z, Liang L, Zhang Y, Wang X, Zhang K. (2010). New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC evolutionary biology, 10(1): 1-14.
18. Liang L, Liu Z, Liu L, Li J, Gao H, Yang J, Zhang KQ. (2016). The nitrate assimilation pathway is involved in the trap formation of Arthrobotrys oligospora, a nematode-trapping fungus. Fungal Genetics and Biology, 92: 33-39.
19. Lopez-Llorca L, Olivares-Bernabeu C, Salinas J, Jansson H, Kolattukudy P. (2002). Pre-penetration events in fungal parasitism of nematode eggs. Mycological Research, 106(4): 499-506.
20. Morton CO, Hirsch PR, Kerry BR. (2004). Infection of plant-parasitic nematodes by nematophagous fungi: a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology, 6: 161–170.
21. Nordbring-Hertz B, Janson HB, Tunlid A. (2006). Nematophagous fungi. Encyclopedia of Life Sciences, 1–11.
22. Park J, Seo Y, Kim YH (2014) Biological control of Meloidogyne hapla using an antagonistic bacterium. Plant Pathol J., 30: 288–298.
23. Persmark L, Banck A, Jansson H-B (1996). Population dynamics of nematophagous fungi and nematodes in an arable soil: vertical and seasonal fluctuations. Soil Biology and Biochemistry, 28: 1005–1014.
24. Pfister DH. (1997). Castor, Pollux and life histories of fungi. Mycologia 89: 1–23.
25. Soliman G, Elkhateeb W, Wen TC, Daba G. (2022). Mushrooms as efficient biocontrol agents against the root-knot nematode, Meloidogyne incognita. Egyptian Pharmaceutical Journal, 21(1)68: 1-10.‏
26. Stirling GR. (1992). Biological control of plant parasitic nematodes: progress, problems and prospects. Parasitol Today, 8: 320.
27. Timper P. (2014). Conserving and enhancing biological control of nematodes. J Nematol., 46: 75–89.
28. Van Ooij C. (2011). Fungal pathogenesis: hungry fungus eats nematode. Nat Rev Microbiol., 9: 766–767.
29. Wang BL, Chen YH, He JN, Xue H, Yan N, Zeng ZJ, Bennett JW, Zhang KQ, Niu XM. (2018). Integrated metabolomics and morphogenesis reveal volatile signaling of the nematode-trapping fungus Arthrobotrys oligospora. Applied and environmental microbiology, 84(9): pp.e02749-17.
30. Wang R, Dong L, He R, Wang Q, Chen Y, Qu L, Zhang YA. (2018). Comparative genomic analyses reveal the features for adaptation to nematodes in fungi. DNA Research, 25(3): 245-256.
31. Yang J, Tian B, Liang L, Zhang K. (2007). Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnology, 75(1): 21-31.
32. Yang JK, Ye F, Mi Q, Tang S, Li J, Zhang K. (2008). Purification and cloning of an extracellular serine protease from the nematode-trapping fungus Monacrosporium cystosporium. Journal of microbiology and biotechnology, 18(5): 852-858.
33. Youssar L, Wernet V, Hensel N, Yu X, Hildebrand H, Schreckenberger B, Kriegler M, Hetzer B, Frankino P, Dillin A, Fischer R. (2019). Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS genetics, 15(3): p.e1008029.
34. Zhang L, Zhou Z, Guo Q, Fokkens L, Miskei M, Pócsi I, Zhang W, Chen M, Wang L, Sun Y, Donzelli B. (2016). Insights into adaptations to a near-obligate nematode endoparasitic lifestyle from the finished genome of Drechmeria coniospora. Scientific reports, 6(1): 1-15.
35. Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J. (2020). Fungi–nematode interactions: diversity, ecology, and biocontrol prospects in agriculture. Journal of Fungi, 6(4): p.206.
36. Zhang Z (2013) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (Addenda 2013). Zootaxa 3703: 5–11.


License: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. Visit for more details

bottom of page