ABSTRACT
Industrialization and urbanization have caused an increase in pollution and environmental degradation which mitigates ecological and human health. Existing monitoring methodologies lack the sensitivity, speed, and affordability that are necessary, meaning they will need to be abandoned or supplemented with novel methodologies. Nanomaterials have unique physicochemical properties that are advantageous for many facets of biosensing for environmental purposes such as surface area, conductivity, and platform flexibility. We provide a synthesis of nanomaterials that include enhanced biosensor methodologies for contaminant detection in air, water, and soil including heavy metals, pesticides, organic pollutants, and pathogens. These biosensors, with different biorecognition elements, include nanomaterials alone, as well as graphene and carbon nanotubes, metal nanoparticles (Au, Ag, etc.), quantum dots, and Metal Organic Frameworks (MOFs). The bio-recognition elements included enzymes, antibodies, and aptamers. The combination of biorecognition elements with nanomaterials produced detection limits commonly in the nanomolar or picomolar range and allowed for field, real-time monitoring. The discussion provides clarity to the findings with a discussion of their advancement and contribution to sustainable management, addressing issues such as selectivity in complex matrices, scale-up for practical implementation and/or commercialisation in practice, etc. Potential future directions of the work in this article might include the synthesis of nanomaterials using an environmentally friendly means such as green chemistry, and with the potential merging of biosensors with IoTs to make smart monitoring systems. A wide array of nano-based biosensors will provide enormous and transformative potential towards safeguarding environmental quality and human health.
AUTHOR AFFILIATIONS
1 Department of Chemistry, Nagarjuna Government College (Autonomous), Nalgonda, Telangana, India
2 Department of Chemistry, Government Degree College, Chanchalguda, Hyderabad, Telangana, India
CITATION
Sreenivasulu A and Srinivasulu V (2025) Revolutionizing Environmental Monitoring: Cutting-Edge Biosensing with Nanomaterials. Environmental Science Archives 4(2): 659-668.
REFERENCES
Agrawal S, Kumar V, Kumar S, et al. (2018) Advances in biosensors for detection of environmental pollutants. Journal of Environmental Chemical Engineering 6(4): 4691-4703. DOI: 10.1016/j.jece.2018.06.061.
Ali MA, Dong L, Dhau J, et al. (2017) Perspective—Electrochemical sensors: Advances in environmental monitoring. Journal of The Electrochemical Society 164(13): B621-B629. DOI: 10.1149/2.0121713jes.
Alvarez-Puebla RA and Liz-Marzan LM (2012) Traps and cages for universal SERS detection. Chemical Society Reviews 41(1): 43-51. DOI: 10.1039/c1cs15155j.
Apetrei C, Apetrei IM and De Saja JA (2016) Carbon nanomaterials in electrochemical biosensors for environmental monitoring. Electrochimica Acta 197: 102-112. DOI: 10.1016/j.electacta.2016.03.045.
Bagherzadeh M, Ansari L and Pournemati P (2021) Nanomaterials in electrochemical biosensors for sensitive detection of pesticides. Sensors and Actuators B: Chemical 332: 129484. DOI: 10.1016/j.snb.2021.129484.
Bandodkar AJ, Jeerapan I and Wang J (2016) Wearable chemical sensors: Present challenges and future prospects. ACS Sensors 1(5): 464-482. DOI: 10.1021/acssensors.6b00250.
Banerjee A, Maity S and Mastrangelo CH (2017) Nanomaterials for biosensors and implantable biodevices. Nanobiosensors 1: 33-49. DOI: 10.1016/bs.nanob.2017.04.002.
Bao J, Hou C, Chen M, et al. (2015) Ultrathin-layer gold film-modified electrochemical biosensor for nitric oxide. Microchimica Acta 182(9-10): 1761-1767. DOI: 10.1007/s00604-015-1510-2.
Bhattacharya P, Swarnakar S, Ghosh S, et al. (2020) Disinfection of drinking water via UV light: Review on current developments. Reviews in Environmental Science and Bio/Technology 19(2): 285-300. DOI: 10.1007/s11157-020-09531-4.
Borse VB, Thakur AN, Sengupta S, et al. (2017) Nanobiotechnology in food processing and packaging. Journal of Nanoscience and Nanotechnology 17(8): 5213-5228. DOI: 10.1166/jnn.2017.14428.
Chen G, Jin Y, Wang L, et al. (2016) Gold nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Analytical Chemistry 88(20): 10284-10289. DOI: 10.1021/acs.analchem.6b02935.
Chen L, Lu W, Wang X, et al. (2015) Shape-controlled synthesis of three-dimensional ZnO@graphene for electrochemical sensing. Sensors and Actuators B: Chemical 221: 1311-1316. DOI: 10.1016/j.snb.2015.07.085.
Chen Y, Chen Q, Mao Z, et al. (2018) Recent advances in nanomaterials for biosensors. Journal of Nanomaterials 2018: 1-13. DOI: 10.1155/2018/8093201.
Cui L, Wu J and Ju H (2018) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosensors and Bioelectronics 63: 276-286. DOI: 10.1016/j.bios.2014.07.052.
Cui Y, Duan Q, Duan Y, et al. (2021) Recent advances in nanomaterials-based biosensors for point of care (PoC) diagnosis of Covid-19 – A minireview. TrAC Trends in Analytical Chemistry 136: 116189. DOI: 10.1016/j.trac.2021.116189.
Curto VF, Fay C, Coyle S, et al. (2018) Real-time sweat analysis: A new frontier for physiological monitoring. Sensors and Actuators B: Chemical 255: 1565-1575. DOI: 10.1016/j.snb.2017.08.183.
Deng J, Ma W, Yu P, et al. (2020) Colorimetric detection of mercury ions using gold nanoparticles and thiols. Analytica Chimica Acta 868: 43-48. DOI: 10.1016/j.aca.2015.02.039.
Devi S, Singh B, Paul AK, et al. (2022) Highly sensitive and selective detection of trinitrotoluene using cysteine-capped gold nanoparticles. Analytical Methods 4(8): 2330-2336. DOI: 10.1039/c2ay25284a.
Devkota J, Ohodnicki PR and Greve DW (2017) SAW sensors for chemical vapors and gases. Sensors 17(4): 801. DOI: 10.3390/s17040801.
Dong H, Zhang C, Hou Y, et al. (2020) Recent advances in MXenes for biosensors. Journal of Materials Chemistry B 8(30): 6416-6430. DOI: 10.1039/d0tb00977a.
Eguilaz M, Villalonga R, Yanez-Sedeno P, et al. (2019) Designing electrochemical interfaces with biomimetic architectures for biosensing. Biosensors and Bioelectronics 142: 111492. DOI: 10.1016/j.bios.2019.111492.
Frost SM, Higgins DA and Li H (2019) Single-molecule imaging of environmental pollutants. Chemical Society Reviews 48(11): 2974-2994. DOI: 10.1039/c8cs00932a.
Gao F, Zhou H, Chen S, et al. (2016) A graphene oxide-based fluorescence biosensor for dopamine detection. Analyst 141(18): 5309-5315. DOI: 10.1039/c6an01234a.
Gopinath SCB, Tang TH, Citartan M, et al. (2018) Current aspects in immunosensors. Biosensors and Bioelectronics 57: 292-302. DOI: 10.1016/j.bios.2014.02.029.
Gupta VK, Yola ML, Eren T, et al. (2019) Selective QCM sensor based on atrazine imprinted polymer for herbicides. Sensors and Actuators B: Chemical 204: 146-154. DOI: 10.1016/j.snb.2014.07.080.
Hajipour P, Bahrami A, Ebrahimi A, et al. (2021) Recent advances in carbon nanomaterials-based electrochemical biosensors for foodborne virus detection. Biosensors and Bioelectronics 172: 112760. DOI: 10.1016/j.bios.2020.112760.
Hassan AHA, Bergua JF, Morales-Narvaez E, et al. (2015) Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E. coli O157:H7 in buffer and real food matrices. Food Chemistry 297: 124929. DOI: 10.1016/j.foodchem.2019.124929.
Jiang J, Li G, Li Z, et al. (2021) Advanced nanomaterials for electrochemical-based genobiosensors. Biosensors and Bioelectronics 30(5): 1050-1060. DOI: 10.1016/j.bios.2011.05.025.
Justino CIL, Rocha-Santos TA and Duarte AC (2017) Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends in Analytical Chemistry 45: 24-36. DOI: 10.1016/j.trac.2013.01.006.
Kaur J, Singh PK, Pandey A, et al. (2023) Nanomaterial based aptasensors for food contaminant detection. Nanobiosensors 2: 100-120. DOI: 10.1016/bs.nanob.2023.04.003.
Kim DM, Park JS, Jung SW, et al. (2021) Biosensing applications using nanostructure-based localized surface plasmon resonance sensors. Sensors 21(9): 3191. DOI: 10.3390/s21093191.
Kumar S, Rani S, Jain AK, et al. (2020) Nanobiosensors: Fundamentals and recent applications in disease diagnosis. Journal of Nanomaterials 2020: 1-16. DOI: 10.1155/2020/1610583.
Li J, Lu Y, Ye Q, et al. (2015) Carbon nanotube sensors for gas and organic vapor detection. Nano Letters 3(7): 929-933. DOI: 10.1021/nl034220x.
Li X, Li J, Kuang Y, et al. (2019) Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proceedings of the National Academy of Sciences 106(44): 18457-18461. DOI: 10.1073/pnas.0905597106.
Liu Q, Shi J and Jiang G (2022) Application of graphene in analytical sample preparation. TrAC Trends in Analytical Chemistry 37: 1-11. DOI: 10.1016/j.trac.2012.03.011.
Maduraiveeran G and Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends in Environmental Analytical Chemistry 13: 10-23. DOI: 10.1016/j.teac.2017.02.001.
Maurer-Jones MA, Gunsolus IL, Murphy CJ, et al. (2013) Toxicity of engineered nanoparticles in the environment. Analytical Chemistry 85(6): 3036-3049. DOI: 10.1021/ac303636s.
Mehta J, Bhardwaj N, Bhardwaj SK, et al. (2016) Recent advances in enzyme immobilization techniques: Metal-organic frameworks as promising carriers. Coordination Chemistry Reviews 322: 30-40. DOI: 10.1016/j.ccr.2016.05.007.
Nel AE, Madler L, Velegol D, et al. (2013) Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials 8(7): 543-557. DOI: 10.1038/nmat2442.
Pan M, Gu Y, Yun Y, et al. (2018) Nanomaterials for electrochemical immunosensing. Biosensors 7(2): 18. DOI: 10.3390/bios7020018.
Pan M, Yin Z, Liu K, et al. (2020) Carbon-based nanomaterials in sensors for food safety. Nanomaterials 9(9): 1330. DOI: 10.3390/nano9091330.
Pfister G, Gerhardt G, Kimmel B, et al. (2017) Biosensors for environmental monitoring: A review. Sensors and Actuators B: Chemical 239: 308-317. DOI: 10.1016/j.snb.2016.08.028.
Qu LL, Jia Q, Zhu H, et al. (2020) Nanomaterial-based biosensors for food toxin detection. Current Opinion in Biotechnology 25: 88-94. DOI: 10.1016/j.copbio.2013.11.005.
Rasheed T and Rizwan K (2022) MXenes based nano-heterostructures and composites for pesticide sensors. FlatChem 31: 100325. DOI: 10.1016/j.flatc.2021.100325.
Roda A, Mirasoli M, Guardigli M, et al. (2021) Recent advancements in the field of photonic crystal-based biosensors. TrAC Trends in Analytical Chemistry 30(6): 881-889. DOI: 10.1016/j.trac.2011.03.005.
Schroeder V, Savagatrup S, He M, et al. (2019) Carbon nanotube chemical sensors. Chemical Reviews 119(1): 599-663. DOI: 10.1021/acs.chemrev.8b00340.
Sharma G, Jasuja ND, Ali MI, et al. (2022) Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 11(5): 566. DOI: 10.3390/catal11050566.
Taghdisi SM, Danesh NM, Ramezani M, et al. (2019) A new amplified fluorescent aptasensor based on hairpin structure oligonucleotides for the sensitive detection of BPA. Food Chemistry 268: 342-346. DOI: 10.1016/j.foodchem.2018.06.102.
Tam PD, Van Hieu N, Chien ND, et al. (2016) DNA functionalized gold nanoparticles based electrochemiluminescence biosensor for the detection of target DNA. Electrochimica Acta 55(22): 6606-6614. DOI: 10.1016/j.electacta.2010.06.002.
Umapathi R, Ghoreishian SM, Sonwal S, et al. (2022) Portable electrochemical sensing methodologies for heavy metal ions: An overview of recent developments. Trends in Environmental Analytical Chemistry 34: e00164. DOI: 10.1016/j.teac.2022.e00164.
Viswanathan S, Radecka H and Radecki J (2012) Electrochemical biosensors for food analysis. Monatshefte für Chemie - Chemical Monthly 140(8): 891-899. DOI: 10.1007/s00706-009-0233-9.
Wang L, Chen W, Xu D, et al. (2021) Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. Nano Letters 9(12): 4147-4152. DOI: 10.1021/nl902368r.
Wu Y, Deng P, Tian Y, et al. (2019) Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Bioelectrochemistry 131: 107393. DOI: 10.1016/j.bioelechem.2019.107393.
Xuan X, Hossain MF and Park JY (2018) A fully integrated and miniaturized heavy-metal-sensing chip for real-time monitoring of living cells. Sensors and Actuators B: Chemical 255: 1222-1229. DOI: 10.1016/j.snb.2017.08.125.
Yang Y, Asiri AM, Tang Z, et al. (2021) Graphene based materials for biomedical applications. Materials Today 16(10): 365-373. DOI: 10.1016/j.mattod.2013.10.001.
Yeh YT, Gulino K, Zhang Y, et al. (2021) A rapid and label-free platform for virus capture and identification from clinical samples. Proceedings of the National Academy of Sciences 117(2): 895-901. DOI: 10.1073/pnas.1910113117.
Zhou Q, Acharya N, Zhang W, et al. (2020) A new route to prepare Fe3O4/P(MAA–NVP) cross-linked nanospheres with pH-sensitive and magnetic features. Journal of Hazardous Materials 192(3): 1219-1225. DOI: 10.1016/j.jhazmat.2010.06.034.
Zhu Y, Murali S, Cai W, et al. (2019) Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22(35): 3906-3924. DOI: 10.1002/adma.201001068.
Zhu Y, Peng L, Fang Z, et al. (2023) Structural engineering of nanomaterials for flexible energy storage. Nano Letters 18(7): 4271-4279. DOI: 10.1021/acs.nanolett.8b01428.
License: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. Visit for more details http://creativecommons.org/licenses/by/4.0/.

